
SSH Keys

BV

[2015-09-20 Sun 12:00]

1 The problem

Over the years I've build up about a dozen SSH key pairs. They have tended

to get used in two competing patterns one-to-many relationships:

1. One private key copied to many clients.

2. One public key copied to many servers.

This pattern is repeated for di�erent domains. For example, the following

keys exist:

� two used for decades for main interactive shell access at work and home

with both public and private proliferated.

� one for every github identity maintained. Single public key placed on

github, private key proliferated.

� various special purposes accounts with usually mild proliferation of

both public and private halves.

This pattern of usage causes a practical problem that when too many

private keys get loaded in the agent the matching key may not be tried before

the connection negotiation fails (usually after 3 o�ered keys are unsuccessful).

This pattern also leads to a potential security vulnerability where the

probability of a key compromise increases with the proliferation of the private

key and the potential damage increases with the proliferation of the public

key. Limiting key pairs to be associated with just one pair of connection

end points maximizes security but also inconvenience. Servers that limit the

number of public keys force one to either proliferate private keys or to forego

connection except from one client.

1



2 Best compromise

Given the above, the best compromise (to avoid security compromise!) policy

seems to be to prefer, in order of increase risk:

1. Generate a key pair unique to each client-server connection.

2. Where unacceptable, generate a single, default, unique key pair on

every client account and proliferate it to those servers that support

multiple public keys.

3. Where a server supports only a single authorized key, generate a single

key pair and proliferate its private half to the clients that require it.

3 Key management

There is a matrix of N-clients, N-servers, N-public and N-private keys to

manage. Public keys may be distributed to all servers but only select ones

shall be placed in ~/.authorized_keys and on a per-server basis. On the

other hand, private keys should only be distributed to select clients as re-

quired and no more. To avoid the "too many keys" problem described above,

a con�guration needs to be maintained to direct select private keys to be used

to connect to select servers. This con�guration has mild security sensitivity

as it implies which server authorized which public key. Its use can also be

location dependent as some host names may only be resolved depending on

the available DNS servers (eg, home router vs work vs hotel).

3.1 Layout of ~/.ssh/

The parts of ~/.ssh/ that are safe to distribute (all but private keys) will

be kept in git and distributed.

.ssh/

authorized_keys.d/pubkeys/<*.pub> # distributed by default

authorized_keys.d/<server>/<symlinks> # distributed by default

config.d/fragments/ # distributed by default

config.d/<client>/<symlnks> # distributed by default

privkeys/ # not distributed by default

the pubkeys/ directory holds all public key �les. The authorized_keys.d/<server>/

directory holds symbolic links to �les in pubkeys/ which are authorized to

2



log in. Likewise, config.d/fragments holds con�guration fragments which

get linked into a client-speci�c sub directory. To con�gure a client or server

account one does:

(server)$ cat ~/.ssh/authorized_keys.d/`hostname`/* > ~/.ssh/authorized_keys

(client)$ cat ~/.ssh/config.d/`hostname`/* > ~/.ssh/config

4 Con�guration Management

The three policies are supported by ~/.ssh/config patterns.

For the �rst policy, where a single, unique key pair is used for exactly

one client to connect to one server a con�guration stanza like the following

is used:

Host ...

User ...

Hostname ...

IdentityFile ~/.ssh/privkeys/id_%u-%l-%r-%h

When the default key for the user is acceptable then the identity �le is

used:

Host ...

IdentityFile ~/.ssh/privkeys/id_%u-%l

When a key is distributed to many clients for accessing a single server

then:

Host ...

IdentityFile ~/.ssh/privkeys/id_%r-%h

Private keys take similar names but with .pub appended.

3


	The problem
	Best compromise
	Key management
	Layout of ~/.ssh/

	Configuration Management

